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Abstract— As robotic technology plays an increasing role in
human lives, “robot audition”, human-robot communication,
is of great interest, and robot audition needs to be robust
and adaptable for dynamic environments. This paper addresses
sound source localization working in dynamic environments
for robots. Previously, noise robustness and dynamic localized
sound selection have been enormous issues for practical use. To
correct the issues, a new localization system “Selective Attention
System” is proposed. The system has four new functions:
localization with Generalized EigenValue Decomposition of
correlation matrices for noise robustness(“Localization with
GEVD”), sound source cancellation and focus (“Target Source
Selection”), human-like dynamic Focus of Attention (“Dynamic
FoA”), and correlation matrix estimation for robotic head
rotation (“Correlation Matrix Estimation”). All are achieved
by the dynamic design of correlation matrices. The system is
implemented into a humanoid robot, and the experimental vali-
dation is successfully verified even when the robot microphones
move dynamically.

I. INTRODUCTION

In recent years, robot technology has been rapidly devel-

oped, and more and more robots such as humanoid robots

work with humans. For practical use of the robots, “Robot

audition” proposed in [1], is now of great interest.

Sound source localization is one of the most fundamental

processes for robot audition since results of localization

induce post-signal processes such as sound source separation

and speech recognition [2], [3].

Because of the importance, localization methods have been

widely researched for several decades. Some outstanding

methods are beamforming [4], [5], and MUSIC (Multiple

SIgnal Classification) [6], [12] (See Sec. II-A for the detail of

MUSIC), and MUSIC was applied to real world applications

such as robotics since the peak of the spatial spectrum is

more detectable than other reported methods.

However, these methods which used to focus on static

conditions have difficulties in being applied to flexible dy-

namic environments. Most of them used to hold the following

assumptions.

A1) Target sources have stronger power than noise sources
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(a) Reported situation (b) Proposed situation

Fig. 1. Situation considered

A2) No selective function of target sound sources

A3) Stationary sound sources

A4) Stationary microphone array

Fig. 1(a) shows a schematic image of a reported situation

from previous research.

As a matter of fact, a robot in a real environment is

surrounded by many types of sounds such as its own fan

noise. Therefore, A1 cannot be always satisfied. Moreover,

a microphone array on the robot moves as the robot’s head

moves dynamically, so A3 and A4 are not always fulfilled.

A2 is also not an ignorable problem since multiple signals

and noises make the peak of the spectrum more undetectable.

Therefore, the assumptions A1-A4 can be critical issues for

real robot localization.

To solve the issues, a new sound source localization

method is proposed. Fig. 1(b) shows the schematic image

of the considered situation in the proposed method.

For A1, GEVD (Generalized EigenValue Decomposition)

method is adopted [13]. The method is based on MUSIC,

but a noise correlation matrix is additionally used in order

to suppress environmental noises.

For A2, dynamic design of correlation matrices for GEVD

is proposed in order to select specific sounds to be cancelled

or focused on. Hereinafter, the function for cancelling and

focusing on sounds is called “Target Source Selection”.

As a further application of the Target Source Selection,

the correlation matrices can be designed to specify the speed

of cancelling and focusing on sounds with respect to their

importance. It realizes human-like intelligent localization and

is called “Dynamic FoA (Focus of Attention)” in this work.

For A3 and A4, dynamic correlation matrix transformation

is proposed with regards to the robot’s head orientation,

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 664



TABLE I

PARAMETERS OF THE LOCALIZATION MODEL

M Number of microphones

L Number of sound sources

m Index for the microphones (1 ≤ m ≤ M)

l Index for the sound sources (1 ≤ l ≤ L)

θl Direction of l-th sound source [deg]

φ Orientation of the robot’s head [deg]

ψ Orientation of the steering vector [deg]

Sl(ω,θl) Signal of the l-th sound source in frequency domain

sl(t,θl) Sl(ω,θl) in time domain

Nm(ω,φ) Additive noise measured by m-th microphone
with the head direction φ

NNN(ω,φ) [N1(ω,φ),N2(ω,φ), ...,NM(ω,φ)]T

nm(t,φ) Nm(ω,φ) in time domain

nnn(t,φ) [n1(ω,φ),n2(ω,φ), ...,nM(ω,φ)]T

Am,l(ω,φ ,θl) Transfer function between l-th source and
m-th microphone when the head orientation is φ

AAAl(ω,φ ,θl) [A1,l(ω,φ ,θl), ...,AM,l(ω,φ ,θl)]
T

am,l(t,φ ,θl) Am,l(ω,φ ,θl) in time domain

Xm(ω) Signal measured by m-th microphone
in frequency domain

XXX(ω) [X1(ω),X2(ω), ...,XM(ω)]T

xm(t) Xm(ω) in time domain

xxx(t) [x1(t),x2(t), ...,xM(t)]T

GGG(ω,ψ) Steering vector toward the direction of ψ
RRR(ω,φ) Correlation matrix of measured signal with

the head orientation φ (∈ C
M×M )

eeem(ω,φ) Eigenvalue vectors of RRR(ω,φ)
EEE(ω,φ) Eigenvalue vector matrix [eee1, ...,eeeM ]

λm Eigenvalues of RRR(ω,φ), where λ1 ≥ λ2 ≥ ... ≥ λM

ΛΛΛ diag(λ1, ...,λM)

which is called “Correlation Matrix Estimation”. It accom-

plishes localization over when rotating the robot’s head.

The GEVD method, Target Source Selection, Dynamic

FoA, and Correlation Matrix Estimation are integrated into

a system called “Selective Attention System”, and it is

implemented for the Honda ASIMO robot, and the system

was evaluated in simulated and real environments.

II. PRELIMINARIES

This section explains MUSIC for further discussion.

Here, the signal model commonly used in array processing

is considered. The parameters are listed in Table I.

The model of signal measured by each microphone is

regarded as following a linear receiving system.

xm(t) =
L

∑
l=1

{am,l(t,φ ,θl)sl(t,θl)}+nm(t,φ) , (1)

where nm(t,φ) is additive noise mainly in respect of envi-

ronmental noises. The Fourier transform of xxx(t) is

XXX(ω) =
L

∑
l=1

{AAAl(ω,φ ,θl)Sl(ω,θl)}+NNN(ω,φ) . (2)

A. MUSIC Method [6]

In this section, the well known subspace-based method,

MUSIC is briefly introduced for later discussion.

The first step is to derive the steering vector GGG(ω,ψ) in

advance of localization. Suppose φ = 0, L = 1, and nm(t,φ) =

0. When s1(t,θ1) is an impulse signal, The Fourier transform

of xm(t) = am,1(t,0,θ1)s1(t,θ1) is represented as

XXX(ω) = AAA1(ω,0,θ1)S1(ω,θ1) = AAA1(ω,0,θ1) (3)

since S1(ω,θ1) = 1. XXX(ω) at arbitrary angle θ1 is defined as

a steering vector. Let GGG(ω,ψ) be the pre-measured steering

vector at each ψ represented as

GGG(ω,ψ) = AAA1(ω,0,ψ) . (4)

During localization, xxx(t) is measured at sampling time τ .

(Notice that now nm(t,φ) of (1) cannot be assumed to be

zero.) Let XXX(ω,τ) be the Fourier transform of xxx(τ). Then,

the correlation matrices of xxx(τ) are defined as

RRR(ω,φ) = XXX(ω,τ)XXX∗(ω,τ) , (5)

where ()∗ represents the complex conjugate transpose oper-

ator. Suppose φ = 0 for simplicity. The eigenvalue decom-

position of RRR(ω,φ) is obtained as

RRR(ω,φ) = EEE(ω,φ)ΛΛΛEEE−1(ω,φ) . (6)

Since λm represents the power of each sound, λi and eeei

when 1 ≤ i ≤ L are the eigenvalues and vectors in terms of

the sound sources, and λi and eeei when L + 1 ≤ i ≤ M are

those of noises. The spatial spectrum is defined as

P(ω,ψ) =
|GGG∗(ω,ψ)GGG(ω,ψ)|

∑M
m=L+1 |GGG

∗(ω,ψ)eeem|
. (7)

Thus, when the direction of steering vector GGG(ω,ψ) and

that of a sound source is the same, P(ω,ψ) is theoretically

infinity1. Therefore, MUSIC provides easy detectable and

reliable peaks and has been used for robot localization. It is

also easy to be implemented for robots because of its low

computational cost.

However, the method only works when the assumption

A1 is satisfied. In case of robot localization, the issue is not

avoidable since NNN(ω,φ) of (2) is greater than the first term

in many cases. Then, some of eeei(1 ≤ i ≤ L) are chosen from

noises, and (7) returns undesired peaks.

III. SELECTIVE ATTENTION SYSTEM

In this section, the proposed localization system for

achieving A1-A4 in Sec. I is introduced.

The parameters additionally defined for the discussion in

this section are listed in Table II.

A. GEVD Method

In order to solve the problem of MUSIC, the GEVD

method is utilized as a main localization method. The math-

ematical properties of GEVD are described in [9].

The problem is that when the power of noises is stronger

than that of sounds to be localized, the eigenvectors for

noises are mistakenly used as these for sounds.

The way to solve the problem is to determine the corre-

lation matrix in terms of noises NNN(ω,φ). Let KKK(ω,φ) be

1In practical use, the noises cannot be assumed to be white, and the noises
are actually cross correlated with the sound sources. Therefore, the peak is
not going to be infinity.
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TABLE II

ADDITIONAL PARAMETERS FOR SEC. III

RRR(ω,φ) Correlation matrix of measured signals
(defined in the previous section)

KKK(ω,φ) Correlation matrix of pre-measured noises
(defined in the previous section)

CCCl(ω,φ) Correlation matrix for the l-th signal

RRRl(ω,φ) Correlation matrix of measured signals when
the l-th sound is detected.

VVV (ω,φ) Designed correlation matrix

Dl Decay parameter for l-th sound(−1 ≤ Dl ≤ 1)

eeel,m(ω,φ) Eigenvalue vectors of CCCl(ω,φ)
EEE l(ω,φ) Eigenvalue vector matrix [eeel,1, ...,eeel,M ]

λl,m Eigenvalues of CCCl(ω,φ), where λl,1 ≥ λl,2 ≥ ... ≥ λl,M

ΛΛΛl diag(λl,1, ...,λl,M)

ĈCCl(ω,φ ,φ ′) Estimated Correlation matrix of the l-th signal
from φ to φ ′

III M-th order identity matrix

CCC
Dl
l (ω,φ) Correlation matrix in the Dynamic FoA

for the l-th signal

the correlation matrix derived by noise sources, which is

described as

KKK(ω,φ) = NNN(ω,φ)NNN∗(ω,φ) , (8)

where NNN(ω,φ) can be measured when all SSSl(ω,θl) = 0 in

(2). Then, the GEVD is described as

RRR(ω,φ)êeem(ω,φ) = λ̂mKKK(ω,φ)êeem(ω,φ) , (9)

where λ̂m and êeem are new eigenvalues and vectors. This

decomposition suppresses the noises.

If KKK is a regular matrix, the decomposition is simplified

as a normal eigenvalue decomposition problem

KKK−1(ω,φ)RRR(ω,φ)êeem(ω,φ) = λ̂mêeem(ω,φ) , (10)

When the noises are uncorrelated to the sounds, KKK is not a

regular matrix. However, in most cases of robot sound source

localization, they are cross correlated, so (10) can be adopted

as an equation of GEVD.

The new GEVD spatial spectrum is described as

P̂(ω,ψ) =
|GGG∗(ω,ψ).GGG(ω,ψ)|

∑M
m=L+1 |GGG

∗(ω,ψ).êeem|
. (11)

Now, all noises are suppressed, so the eigenvectors of the

noise sources are not chosen any more. This is a robust

localization method for those noises.

B. Target Source Selection

In the GEVD method, noise correlation matrix KKK(ω,φ) is

utilized to suppress noises NNN(ω,φ).
As an application of the method, it is shown that the

method can select specific sounds to be localized and to be

cancelled by the appropriate design of correlation matrices.

In Sec. III-A, (10) is used for cancelling the noises. In the

decomposition, the inverse of KKK(ω,φ) can be regarded as a

“cancel operator” of noises NNN(ω,φ) from the original cor-

relation matrix RRR(ω,φ). Viceversa, RRR(ω,φ) can be regarded

as a “focus operator” of all these sounds and noises.

Fig. 2. Steps to derive each correlation matrix

The main idea of Target Source Selection is based on the

cancel-and-focus operators. By the selection of those opera-

tors, we can design the desired localization environment.

The first step is to determine the operator for each sound.

Assume that no sounds are detected coincidentally.

When no sound is in the environment, the microphone

array senses only environmental noises NNN(ω,φ) such as

a robot’s own noise etc. which is pre-measured by φ in

advance, and its correlation matrix is defined as KKK(ω,φ).
When the first sound is detected, a new correlation matrix

of measured signal RRR1(ω,φ) is obtained, which has infor-

mation of both environmental noises and the first sound,

XXX(ω) = AAA1(ω,φ ,θ1)S1(ω,θ1)+NNN(ω,φ) . (12)

Then, the correlation matrix of the first sound is

CCC1(ω,φ) = KKK−1(ω,φ)RRR1(ω,φ) , (13)

since KKK−1 cancels the noise elements from RRR1. Intuitively,

CCC1(ω,φ) can be regarded as the correlation matrix of

AAA1(ω,φ ,θ1)S1(ω,θ1).
2

Same as the step, when the microphone array detects the

second sound, RRR2(ω,φ) is determined, and the correlation

matrix for the second sound is obtained as

CCC2(ω,φ) = CCC−1
1 (ω,φ)KKK−1(ω,φ)RRR2(ω,φ) . (14)

Repeating the process up to the L-th sound, correlation

matrices CCC1, ...,CCCL are determined. The general term of CCCl

is described as follows.

CCCl(ω,φ) =
l

∏
i=1

CCC−1
i (ω,φ)KKK−1(ω,φ)RRRl(ω,φ) . (15)

Thus, CCCl is the focus operator for l-th sound, and CCC−1
l is the

cancel operator for l-th sound AAAl(ω,φ ,θl)Sl(ω,θl).
The intuitive image of the steps to derive each correlation

matrix is shown in Fig. 2. As seen in the hierarchical

structure, it is easy to be implemented to robotic hardware

which is one of the advantages of the function.

For cancelling and focusing on arbitrary sounds, VVV (ω,φ)
is defined as a designed correlation matrix. The general form

of VVV is described as

VVV (ω,φ) =
L

∏
i=1

CCC
pi
i (ω,φ)KKK−1(ω,φ) , (16)

2Strictly speaking, there is an assumption that the noise and sounds are
uncorrelated so that (12) does not have the cross term.
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Fig. 3. Architecture of the proposed system

where pi is integer −1 ≤ pi ≤ 1. Then, (10) is rewritten as

VVV (ω,φ)RRR(ω,φ)êeem(ω,φ) = λ̂mêeem(ω,φ) , (17)

which enables the system to localize arbitrary sounds.

C. Dynamic FoA

In Sec. III-B, focusing on and cancelling sounds are dis-

cretely carried out. Namely, pi in (16) can only be an integer.

For localization, discrete focusing and cancelling are not

significant problems. However, for “intelligent” localization,

it should have a Dynamic FoA function.

Let us consider CCCl again. The main idea is to transform

each CCCl continuously from I to CCC−1
l and viceversa. (Here,

only decaying is examined, so only CCC−1
l is used. For focus-

ing, CCCl can be utilized with the same discussion.)

The eigenvalue decomposition of CCC−1
l is described as

CCC−1
l (ω,φ) = EEE l(ω,φ)ΛΛΛ−1

l EEE−1(ω,φ) , (18)

where ΛΛΛ−1
l = diag(λ−1

l,1 , ...,λ−1
l,M).

For decaying,

CCC
Dl

l (ω,φ) = EEE l(ω,φ)diag(λ
Dl

l,1 , ...,λ
Dl

l,M)EEE−1(ω,φ) (19)

is defined, and Dl is continuously changed from 0 to −1,

depending on the importance of each sound. In this paper,

the time since the robot detects each sound is regarded as

importance. Thus, the decay parameter is gradually getting

smaller as time progresses.

When we hear a new sound, we notice the sound and check

if it is the target sound. When we hear a non-target sound,

we cancel the sound gradually. The Dynamic FoA achieves

such human-like intelligent localization.

D. Correlation Matrix Estimation

In the above discussion, sound source localization without

head rotation is investigated. In this section, localization with

variable φ is considered.

The issue is that head rotation changes the orientation of

the microphone array and all the sounds and noises. Even

when CCCl(ω,φ) is obtained by (15), head rotation from φ to

φ ′ changes all correlation matrices into CCCl(ω,φ ′). Thus, the

estimation of CCCl(ω,φ ′) from CCCl(ω,φ) is required.

Here, the steering vector is used for estimation. As men-

tioned in Sec. III-B, CCCl(ω,φ) can be regarded as correlation

matrix of AAAl(ω,φ ,θl)Sl(ω,θl), which is described as

CCCl(ω,φ) = {AAAl(φ ,θl)Sl(θl)}{AAAl(φ ,θl)Sl(θl)}
∗

= AAAl(φ ,θl)AAA
∗
l (φ ,θl)Sl(θl)S

∗
l (θl) . (20)

SlS
∗
l is not φ -dependent, so the transformation of CCCl from φ

to φ ′ is obtained as

TTT l(ω,φ ,φ ′) = {AAAl(φ)AAA∗
l (φ)}−1{AAAl(φ

′)AAA∗
l (φ

′)} . (21)

Algorithmically, when the robot rotates its head, all

CCCl(ω,φ) is transformed as

ĈCCl(ω,φ ,φ ′) = TTT l(ω,φ ,φ ′)CCCl(ω,φ) . (22)

IV. SYSTEM IMPLEMENTATION

One of the remarkable points of these functions is that the

functions proposed in Sec. III are “sound-independent oper-

ations”, which algorithmically can be easily implemented.

Since the operation can deal with sounds one by one

dynamically, it can be said that the integrated system is

flexible for various environmental changes.

Fig. 3 shows the architecture of the proposed system.

On the PC side, the operation steps for localization are

described as follows.

1) Determination of Rl(ω,φ) (1 ≤ l ≤ L)

2) Determination of CCCl(ω,φ) by (15)

3) Decision for Target Source Selection by pi in (16)

4) Decision for the Dynamic FoA by defining Dl in (19)

depending on the importance of the sounds

5) Transformation of CCCl(ω,φ) with head rotation (22)

In this work, the Honda ASIMO robot with an embedded

8-ch microphone array is used as a robot for experimental

validation. The position of the array is on its head, and it

has an uniform-circular-array-like geometry.
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Two speakers are located at 60[deg] and -60[deg] of the

front side of ASIMO and emit different sounds (can be the

same). The distance between ASIMO and the sounds is 1[m].

The robot has its own fan, which is regarded as a strong

directional noise. The sounds lower than the fan noise are

used for the validation of GEVD.

The architecture of the experimental setup is also shown in

Fig. 3. The control PC and ASIMO are connected through

a wireless network. ASIMO sends the data of the sounds

recorded by the array, and the PC sends the angle for its

head rotation. For real time processing, all the proposed

functions are implemented as component blocks of HARK

robot audition software [10] based on FlowDesigner [11],

which is C++ based. All operations on the PC side are carried

out by a laptop with a 2.5 GHz Intel Core 2 Duo CPU and

2 GB SDRAM running Linux.

The next section shows the results of simulations and

experiments for validation.

V. EVALUATION

In this section, the validity of the proposed method is

evaluated by both simulations and experiments. In Sec. V-

A, numerical comparisons between MUSIC and GEVD are

shown in order to see how robust the GEVD method is for

environmental noises. Sec. V-B gives experimental results of

each function proposed in Sec. III.

The common conditions for validation are as follows.

• K(ω,φ) is given by 5 [deg].

• There are 2 sounds at 60 [deg] and -60 [deg].

• Main robot noise is from an angle of 180[deg]

• The power of environmental noises NNN(ω,φ) is stronger

than that of sounds to be localized.

• The sound from the angle of -60 [deg] is detected first,

then that of 60 [deg] is detected afterwards.

• The steering vector GGG(ω,ψ) is given by 5 [deg].

Namely, ψ = {−175,−170, ...,180}[deg].
• The head rotation is done when the robot detects a

sound, and it tries to face the sound.

A. Numerical Comparison Between MUSIC and GEVD

This section assumes that head orientation is fixed at

0[deg] for the evaluation.

Fig. 4 shows the result. The horizontal axis represents the

Signal-to-Noise (SN) ratio of the sources, and the vertical

axis shows the localization accuracy. Specifically, the graph

shows how many peaks are correctly detected in 100 frames.

Both methods were compared for 1- and 2-sound local-

ization. In both cases, MUSIC performance was obviously

degraded because of the assumption A1 in Sec. I. On the

other hand, GEVD perfectly localized even when the SN

ratio became negative.

In both cases, GEVD was more robust for noises than

MUSIC. The validity of GEVD is successfully verified.

B. Experimental Validation of the Integrated System

Fig. 5 shows the snapshots of the experiment with the

system proposed in Sec. IV.
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Fig. 4. Comparison between MUSIC and GEVD

Fig. 5(a) shows the first phase of an experiment. φ is now

0[deg], and the speaker at -60[deg] starts emitting a low

clock-alarm sound s1(t,−60). The right side of the figure

shows the spatial spectrum of both MUSIC and GEVD when

the robot notices the sound. As seen in the figure, MUSIC

detects a high peak towards the fan noise, which is on the

back side of the robot (180[deg] in the figure). Clearly, the

A1 is not satisfied in this case. (In fact, the sound used in

the experiment is much lower than the fan noise.) So, in the

experiments with MUSIC, the robot cannot rotate its head.

GEVD, however, can cancel the noise by using KKK(ω,0),
and the peak is apparently on the front side of the robot

(-60[deg]). Head rotation is also successfully verified under

the loud noise. Noise robustness of the GEVD method is

clearly confirmed by the experimental result.

Fig. 5(b) represents the second phase of the experiment.

Now, the robot faces s1(t,−60) and tries to cancel the

sound using Dynamic FoA. First, RRR1(ω,−60) is calculated,

and CCC1(ω,−60) is derived in order to hear a new

sound. Dynamic FoA starts working when CCC1(ω,−60) is

determined by

CCC1(ω,−60) = KKK−1(ω,−60)RRR1(ω,−60) . (23)

It is seen that the function is also working properly (See

the right side of the figure). When it finishes cancelling the

sound, it gets ready to hear new sounds.

In Fig. 5(c), the speaker at 60[deg] emits low music

s2(t,60). The robot currently has correlation matrices

KKK1(ω,−60),RRR1(ω,−60), and CCC1(ω,−60). When it hears

the new sound, CCC2(ω,−60) is obtained from RRR2(ω,−60) as

CCC2(ω,−60) = CCC−1
1 (ω,−60)KKK−1(ω,−60)RRR2(ω,−60) .

Therefore, it can decide to focus on or cancel each sound

using Target Source Selection. The right side of the figure

shows the result. The system successfully selects sounds by

the appropriate design of the correlation matrices.

Now, the robot faces s2(t,60) in Fig. 5(d). Since, it

does not have CCC1(ω,60) and CCC2(ω,60), Correlation Matrix
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(a) MUSIC and GEVD (s1(t,−60) with φ = 0[deg]) (b) Dynamic FoA (s1(t,−60) with φ = −60[deg])

(c) Target Source Selection (s1(t,−60) and s2(t,60) with φ = −60[deg]) (d) Correlation Matrix Estimation (s1(t,−60) and s2(t,60) with φ = 60[deg])

Fig. 5. Snapshots of an experiment with the integrated system

Estimation is applied. The estimated matrices are derived as

ĈCC1(ω,−60,60) = TTT 1(ω,−60,60)CCC1(ω,−60) (24)

ĈCC2(ω,−60,60) = TTT 2(ω,−60,60)CCC2(ω,−60) . (25)

The right side of the figure shows the localization result when

VVV (ω,60) = ĈCC
−1

2 (ω,−60,60)KKK−1(ω,60) (26)

is used. As seen in the figure, the peak for the sound is the

highest, so estimation also works in a real environment. In

fact, the estimation result included some undesired peaks.

Even though it is not a big problem, an adaptive technique

is necessary as future work to improve localization.

The validity of each function is successfully confirmed not

only by numerical simulations but also by the experiments.

VI. CONCLUSION AND FUTURE WORK

In this paper, the following functions were integrated in

order to realize robust and intelligent localization, and the

total system is proposed as Selective Attention System.

• GEVD method for cancelling environmental noises

• Target Source Selection for Selective Attention.

• Dynamic FoA for intelligent human-like localization.

• Correlation Matrix Estimation for head rotation

The validity of the system was confirmed not only by

numerical simulations but also by experiments.

The following two points are considered as future work.

As mentioned in Sec. V, localization with the correlation

matrix estimation has small undesired peaks in the spatial

spectrum. Some adaptive subsystems are needed for more

reliable localization.

In this paper, we need to consider localization “during”

head rotation. During head rotation, the relative speed of

sounds are extremely fast, so it is hard to achieve accurate

localization now. Also, our localization method uses dis-

crete noise correlation matrices which are digitized every

5 degrees. Therefore, continuous localization in respect of

head angle is necessary. Some approximation methods for

continuous head angles are to be examined.
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